
C ~as Mo RENSSELAER POLYTECHNIC INST TROt N Y DEPT OF MATHE MA——ETC F/6 12/2
• ON TIlE COMPUTATION OF SINGULAR CONTROLS. (U)

1976 J E FLAHERTY . R E Q’MALLEY AF-AFOSR—2818_75

I UNCLASSIFIED AFOSR—TR—75—1215

I o ~r
~20 333 1 0

I U 
—

.

_ _ _  

1W131_!~NIUIflI
I



lii i c ‘45 ffl12.8 111 2.5I I I

I 
I I . i_~ ~~~~ IIiI~~~
I I _____ 

L
______ ~~~~~~

L ~ 3.6

HI I I ‘~lull
liii’ •

iiii l _____________

1.25 llIIIJ~ IIIH..!..~...

MICROCOPY RESOLUTION TEST CHART
NAT~O~~M ~~ E4 ~ OF $TA~~OAPD5 —



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
—

~~J--~~
•

AFOSR -~~ - 7 6 1215

ON THE CO~PUTAT1ON OF SI N GULAR CON TROLS*

by

Joseph E. Flahérty
Department of Mathematical Sc iences
Rensselaer Polytechnic Institute

Troy, New York 12181

and

Robert E. 0 Ma lley , Jr.
Department of Mathematics

University of Arizona
Tu cson , Arizona 85721

— — -——‘
~

--——-.--
~~~

/ ~ / ~~~~

— / r~/ / , /

p7/
/ ~~~~~~~~~~~~ 

1976
4/ 

—

/

/

1 

— - 

— -- -
- -

---
-

. 

—

*This work was supported in part by the Air Force Office of
Scientific Research , Grant Number AFOSR-75-2818, and by the Office of Naval
Research , Contract Number N00014-76-C-0326.

I

~~ ~ I’



_________
__________ — 

—

~~~~~
--. —‘--—-.w ’e — 

- - . - — 

k

-‘~~ —~~~~~~~
--:‘!— 

- ______________________ __________________ - ———— -  _____________________ _________________

I
H
F

AIR POfiC~ O~~i~~ ~ RES~~~CH (usc)
NOTICE OP 

~~~~~~~ TO DDCThj~ tec~~jQal ~epc~t ha~ b3en revle,Cd an~ is
approved for pubfl~~ re~ea30 lAW A~~ 190 12 (7b).

isA. D. BLQS~
Infor

~~~ 0 Ottj002.

I 

.— .— — ——— — - —— —~ -~— -— . 



_____________________________________ ~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~II~1I~

ABSTRACT

We consider singular optimal control problems consisting of a state

equation

• x = Ax + Bu

for vectors x and scalars u and a cost functional

(x’Qx + €2u2)dt
J O

to be minimized for l u l < m  and E 0. By considering the problem as E -
~~ 0,

singular perturbation concepts can be used to compute solutions consisting of

bang-bang controls followed by singular arcs . The procedure further develops a

numerical technique proposed by Jacobson , Gershwin , and Lele , as well as ad-

ditional analytic methods developed by other authors .

1. INTRODUCTION

A typical singular optimal control problem consists of a state equation

(1.1) x = A x -i- bu , O < t < T < o ’

(subject to end conditions on the n - vector x) and a scalar cost functional

(1.2) J = 
~c ’Q x dt2~~

which is to be minimized for a symmetric , positive semi—de finite matrix Q

(i.e., Q > 0) and for a scalar control u which is restricted to lie within

the finite bounds ;

(1.3) - m < u < m .

2

4p.
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The known theory of singular problems has recently been summarized in Bell and

Jacobson (1975), while research papers on the general problem and particular

applications abound in the current literature.

Jacobson and coworkers (cf. Jacobson and Speyer (1971) and Jacobson ,

Gershw ri , and Lele (1970)) converted such problems to nonsingular (though nearly

singular) problems by considering the perturbed cost

rT
(1.4) LiCE ) = -

~-J (x ’Qx + E2u2)dt
0

for a sequence of positive E values tending toward zero . This device resulted

in considerable progr€~ss both for theoretical purposes and for numerical calcula-

tion . More recently, O’Malley and Jarreson (1975, 1976) and O’Malley (1976) have

used an analogous method to analytically solve such singular control problems

wi th time-va rying coeff icients and vector controls, but without bounds on the

components of the control . Their results rely heavily on the asymptotic theory

for singularly perturbed boun dary value problems for ordinary differential

equations (cf. Wasow (1965), Lions (1973) , and O’Malley (1974)). Applicatio ns

of such analyses in control have recently been surveyed by Kokotovic et al.

(1976). Bel l and Jacobson (1975) stress the need and difficulty of developing

computational techniques for singular control problems and observe that the

best current schemes are the “(-method ’ of Jacobson et al. (1970) and gradient

techniques (cf., e.g., Pagurek and Woodside (1968), Sirisena (1974), and Edge

and Powers (1976)). We note that these (-methods are analogous to the arti—

ficial viscosity methods popular in computational fluid dynamics (cf . Richtmyer

and Morton (1967)). In addition , we note that Boggs (1976) has overcome some

difficulties with gradient techni ques by using asymptotic methods.
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Jacobson et al . (1970) and O’Malley and Jameson (1975) show that although

the optimal cost J(€) given in (1.4) converges uniformly as E -
~ 0 , the

limiting control generally converges nonuniformly. Indeed , the control must

be expected to consist of bang-bang arcs and singular arcs (cf. Johnson and

Gibson (1963)) and convergence is necessarily nonuniform as E -
~ 0 at switch

points. [In another context , we note that the natural slugg ish transfer of

mechanical systems at switc h points of bang-bang control could be modelled by

another singular perturbation device, viz , the introduction of a cost term
rT
j ~2(u(t))2dt for p small.] We also recall that Powers and McDanell (1971)
0

and Edgar and Lapidus (1972) report practical success in using the (—method for
— Saturn rocket guidance and chemical reactor problems . Practical difficulties

certainly remain , however . As E -* 0, for example , Jacobson et al. (1970)

note that numerical instability manifests itself and they suggest a sufficiently

good approximation might result by reducing E to a small , but “still numerically

stable” value. Analogous difficulties have , of cours e, been common in the

numerical solution of boundary value problems for stiff ordinary differential

equations (Cf. Willoughby (1974) or Aziz (1975)). Substantial progress has

been made on these probl ems by using singular perturbation ideas to develop

specially-tailored numerical methods (cf. Miranker (1973), Ferguson (1975),

Flaherty and O’Malley (1977), and Kreiss and Nichols (19 )). We propose a

similar program to further study singular control problems . By combining

asymptotic and numerical ideas , improved methods will necessarily follow .

We cannot, of cours e, obliterate the unavoidable complicated behavior inherent

in these singular problems (cf.,e.g., Fuller (1963)). We observe that the

nearly singular problems are likely to be of independent interest (cf. O’Malley
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and Jamneson (1975)),  thoug h we shall not pursue that question here.

In their recent study of singular arc problems with unbounded control s,

Jameson and O’Malley found considerably different behavior in a sequence of

cases. Case k, k = 1 , 2, ..., corresponds to the more familiar classification

of singular arcs of order k (cf. Robbins (1967) or Goh (1966)) and is defined

such that b’(A’)3QA3b = 0 for j  = 0, 1, ..., k - 2 and b~(AI)
k.
~QA~~~b > 0.

L A given probl em need not fit into any such case (as when Q = 0) and for

vector controls may lie between cases (when the last matrix is singular , but of

positive rank (cf. Anderson (1973)). Like much of the literature (cf. Wonham

and Johnson (1964), Sirisena (1968), and Anderson (1972)), our discussion will

mostly concern Case 1. For Case k problems , the singular arc solution for

an n—vector x and scalar u involves a control law for a dynamical system

of order n — k (cf. O’Malley and Jameson (1976)). It is natural then to seek

a control u which switches k — 1 times between control hounds +m before

reaching the singular arc. It is easy to see that such a control will not

• generally be optimal for k > 2, though we show that it is quite satisfactory

for certain examples . We must anticipate such difficulties , however , since

experts conjecture that infinite switching (as in the classical Fuller problem)

is generic for k > 2 (cf. Krener (1976)). We note that the nonsingular

problem wi th a small fixed value of E could have an optimal solution with a

• finite number of swi tchings , while the limiting singular problem involves infinite

swi tchi ngs.

2. TWO FIRST ORDER SINGULAR ARC PROBLEMS

a. The simplest singular arc problem may be

- - -

~ 

— -~~ -- ~~- - -  ~~~~~~~ - -
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x u , x(O)  = 1

with
, r2 ~3 = 
~-J x~ (t )cJ t
U 0

to be minimized for Ju~ <m.

For m = 
~, the optimal control features an initial negative delta function

impulse which drives the state immediately to zero with the optima l cost J’~ = 0.

To solve this problem by the (-method we consider the nonsingular problem

x = u , x ( U ) = l

with

• J(E ) = ~J (x
2(t) + E2u2(t))dt

0
to be minimized.

Its unique solution for m

x (t,E) = (1 + e 4
~~)~~ (e t

~~ + e 2
~~e

2 t
~~~)

u(t,E) = -~(l + e 4
~~)

_J
(e t

~ - e 2
~~e

_ (2 t
~~~),

has the asymptotic limit

k 
- 

x(t,E) ~ e
/t and u(t,() ~~

, - ~~~t/E 
•

for € -
~

- 0~
’. We note , in particular , that this limiting control behaves like

-ó at t = 0 since

~J
f(t)e t

~
Edt f(0) as E 0.

. - . . . . 4
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For bounded controls , lul ~ m , the optimal control does the best it can (cf.

e.g., Sage (1968)), viz, for m >

-in ,

u =

0 ,

The integrated effect is the same , i.e.., the singular arc solution x = u = 0

is ultimately reached (see Figure 1). Indeed , the preceding results can be

recovered by letting in ~~ - 
~ . For bounded in, the problem can be explicitly

sol ved by using the cost functional J(E) and seek’.ng the asymptotic solution

as € -‘ 0. For m 1 , the limiting cost is exactly ~~
- compared to Jacobson

-
, 

et al. (1970)’s calculated values 0.1717 and 0.1617.

Slight modifications of this examp le can be easily handled , e.g., Rozonoer ’s.
1: example

. - 2
x = u, x(O) 1 , x(2) = -

~~
-, ~~ < 1 , J -

~-J x2dt0

(cf. Pagurek and Woodside (1968)) and the vector control problem

= iu~, fu .~f < 1 , i = 1, 2, J = ~J (x~ + x~)dt.

b. As a second example , consider the harmonic oscillator problem

X 1 
= x 2, x1 (O) = 0

= U~ x2(O) = 1

(2.1) with cost

J(E) = ~f (x ~ + 4 + (2u2)dt

and lul < i n.

For in = ~~, the usual state-costate formulation (cf.,e.g., Athans and 

—~ --—— - - - ,~~~~~~~~~~~~~~~~ -- -~~~~~— - - - ~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~—~~~~~~~~~~
-

~~~ 
-
~ 
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Falb (1965)) implies that the optimal control wil l  be given by

(2 .2)  u = -p 2/E
2

where the state and costate vectors x = (x1,x2)’ and p = (p1,p2Y satisfy

= x2, x1 (0) = 0; = u, x 2 (O) = 1

(2 .3)

1 
= 

~~~ ~1 (
~

) = 0; = - 

~1’ 
p2(5) 

= 0.

The asymptotic solution of the singularly perturbed two point boundary value

problem (2 .2)-(2 .3) can be readily obta ined . It consists of an initial

boundary layer (endpoint region of nonuniform convergence) while the limiting

solution within (0,5) satisfies the limiting problem

= X 2o~ ° ~2O~ ~io -X10, and p20 
= -X20 

- p
10

obtained when we set € = 0. Since p20 
= 0 and X20 = -p10, we ’re left with a

linear system for X10 and p 10. If we now use the boundary valu es X10(O)

= x1 (0) 
= p.~0 (5) P1(5) 

= 0, we get the trivial singular arc solution

(2.4) X 10 = p 10 
= X20 = p~ 0 

0.

Further calculations (cf. O’Malley and Jameson (1975)) also show that the limiting

control has a negative delta function impulse at t = 0. We note that the limiting 4

solut ion for t > 0 wouldn’t be trivial if x1 (O) ~ 0 and that introduction of

the E provides a more convenient method of finding the limiting singular arc

solution than the more familiar techni que of differentiat ing the optimality con—

d1tion H
~~

= O : w 1 ce wi th respect to t (cf , e g , Robbins (1967)) 

- 
)
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The preceding solution wouldn ’t be appropriate for a finite control bound

In, because the impulse in the initial boundary layer would exceed this hound

Instead , standard maximum principle arguments (cf. Boltyanskii (1971)) show

that the continuous optima l control is determined by

u = - p~/E
2 if 

~
p2~ 

~~2

and

u~ = m otherwise.

Moreover , the state and costate vectors satisfy the canonical equations (2.3)

as before. Anticipating that the control initiall y saturates at its negative

bound, we might seek a solution

-in, 0 < t < t l

(2.5) u =

-p~/E~, t1 < t < 5

• and determine t1, if possibl e, so that saturation does not occur on (t1,5)

while > mE2 on (o ,t1). Clearly,

(2.6) x1(t) 
= - ~~ + t, x2(t) = -mt + 1

for 0 < t < t1 while we must satisfy the singularly perturbed problem

X
l 

= x2, x1 (t1) = x1(t~) 

-

(2.7) ~~ = -p2, x2(t1) = x2(t~)

= =

I for ~ ~~t 5 5. 

p~ p1, p2(t 1) ~€
2 p2(5) ~
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The system (2.7) has eigenva lues -1-l/k(E), +k(€)/E , where k2(E)

= (1 ÷ Ifi~ )/2 Thus, the solution of the two-point problem is of the

form

x1 —1/k 1/k

x -1/k2 (t-t )/k ~l/k
Z -(t-t )/k

(2.8) 2 = Ae 1 
+ Be 1

• p1 1 1

-E2/k’

-E/K2 -Elk 2

-k(t-t1 )/E+ € 1/k Ce + E —1/k De ‘ /

E2/k3

€ E 
-

The five boundary conditions in (2.7) provide four linear equations for A , B ,

C, and D and a nonlinear equation for t1. For 5 — t1 >> € , the exponential
-k(5-t1 )/Ee is exponentially negligible , so we successively find

—2(5-t1) -(5-t1)A~~~-Be , D~~~2Be

—2(5—t1) 1C m + B(1 + e ), and B -~-(x1 (t1) - x2(t1))

while t1 must satisfy

-2(5-t1) mt~+2(m-l)t1 —2e 2 —•

mt1 -2(m+l)t1+2

It follows that there is a unique root t1 such that 0 < t1 < - 1 + A +  
_ !~-,

H
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Indeed for in = i , t1 is very near the upper bound 12 , so the optimal

control is approximately given by

-1 , 0 < t < / ~

(2.9) u~~

(~~~~ l)e~~
t
~~~~, t > ~~~.

We so l ved  problem (2 .1 )  w i t h  E = 0 b ’ our asymptotic technique , which is

discussed in Section 3, and found tha t our results (see Figure 2) qualitatively

agreed with the computed solution pictured in Jacobson et al. (1970) . We

found a minimum cost of 0.379 compared to their value of 0.414. Anderson

(1972) solved this probl em by a search technique , obtaining a switching time

of 1.414 with corresponding trajectory values of 0.4144 and -0.4136, com-

pared to our values of 1.414 , 0.4144 , and ‘-0.4138 , respectively.

3. A SYSTEMATIC APPROACH TO CASE ONE P ROBL EM S

Let us now consider free endpoint problems where

(3.1) b’Qb > 0

for a prescribed initial state vector x(O). Since the vector b has rank one ,

we can transform it to its row echel on form

~~= M b = [
~
]

by a nonsir~;ular matrix M. (Here, the zero is an (n — 1)_vector.) Setting

~~~~Mx

we get a transformed probl em analogous to ( l .1)-( l .2) with 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  

j
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= MAM 1 , ~ = ( M ’ ) ~~ QM~~ > 0 ,

= b ’QB > 0, and ~I = u.

Let us assume now that such transformation s have already occurred so that

(3.2) b = [
~
]

and , using corresponding partitioning, wri te

A 11 a 12 Q11 q12
;~~~~~ (3.3) A =  ,

a~1 a22 q-j 2 q22
xl p 1

x =  , and p =

x2 p2

where a12, a21, q12, x 1 and p 1 are (n — 1)-vectors and a22, q22, x2,

and p2 are scalars with q22 > 0. The canonical equations then take the form

= A 11 x 1 + a12x2

X 2 
= a~1x 1 + a22x2 + u

(3.4) = -Q11 x 1 
- q12x2 

- A~1p1 - a21 p2

and

p2 
= -qj2x 1 

- q22x2 - a~2p1 
-

subject to the end conditions that x(O) is prescribed and p (T) = 0.
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With the control constraint lu ! < i n, the maximum principle implies that

the control is either saturated or u —p~/€
2. Since the uncons trained problem

has an optimal control whi ch is initially unbounded and then follows a singular

arc as E ~~- 0, it is natural to seek a bounded control which is saturated on an

initial interva l 0 < t < t1 and unsaturat ed for t1 < t < T. For such switching

solutions , we must satisfy the initial valu e problem

= A 11 x1 + a12x2, x1 (0) given

(3.5)

x2 
= a~1x1 

-
~ a22x2 

-f in, x2(O) given

for 0 < t < t1 and the singularly perturbed two-point problem

= A 11 x1 + a12x2, x1 (t~) = x 1 (t~)

(3.6) 
€2 2 

= €2a~1x1 + E2a22x2 
- 

~~ 
x2(t~) = x2(t~)

p1 
= - q12x2 

- A~1p1 - a21 p2, p1 (T) = 0

= -qj2x2 
- q22x2 

- aj2p1 
- a22p2, p2(t1) = ~mE

2 , p2(T) = 0

for t1 < t < T where the swi tching time t 1 is still unspecified. Besides

requiring continuity of the states , costates , and control at t1, we must check th~

• the control rerrains sat irated until t1 and unsaturated thereafter. One would

expect that the sign of Lhe initial impulse for the unconstrained problem would

generally predict which control bound would initially saturate .

Our previous experience with singular perturbation problems shows that the

asymptotic solution on t1 < t < T will be of the form

It 

I 
_ _
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x1 (t,€) 
= X 1 (t ,E) ÷ E2m

1
(T,E) + E2n1(c ,E)

x2(t,E) 
= X2(t,€) + Em2(-~,€ ) +(3.7)

p1 (t,€ ) 
= P 1 (t ,E )  + E2f1 (T,E) + E2g 1 (a ,E)

= E2P2 (t ,€ ) + E2f2(T ,E) + E2g2(a ,E)

where the functions of

= (t - t1 )/€ or ~ = (T - t)/€

tend to zero as that ‘ stretched variable ” tends to infinity (cf. O’Mal ley and

Janeson (1975), noting that we need p2 
= O(€2)). Within (t1,T), the solution

will be asymptotically represented by the outer solution

(3.8) (X 1,X 2,P1,€
2p
2)

which has a power series expansion in € . Its leading term (X10,X20,P10,€
2P20)

will lie along a singular arc of order one. We note that the initial boundary

layer term f2(T,0) allows the nonuniform convergence of the control u =

as € 0 at the switching point t1 from +m to -P20(t~), i.e., the

jump from its constrained value to its limiting value along the singular arc.

Analogously, the terminal boundary l ayer term g2(o ,0) allows a jump in

p2/E
2 from the singular arc value P20(Ti to the terminal value zero. Explicit

calculation of the boundary layer terms will not be required .

Since (3.8) must satisfy (3.6), the limi ting outer solution will necessarily

satisfy th€ reduced problem

I_ j
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= A 11 X 10 + a12X23, X 10(t1 ) 
=

(3.9) ~2O 
= a~1X10 + a22X20 

- P20, X20(t~) = x2(t~)

= -Q11X 10 - q12X20 
- A~1P10, P10 (T) = 0

0 = -q~ 2X 10 
- q22X20 

-

- . for t1 < t < T. We can solve immediately for X20 and P20 as functions of

X10 and P10 (since q22 ~ 0). This leaves us with the linear two-point problem

= AX 10 
- SP10, X10(t1 ) = x 1 (tj)

(3.10)

~lo = 

~~ lO A’P10, P10(T) = 0

for A = A11 - a12q~~q~2, Q = Q11 - q1~q~~q~~ > 0, and S = a12q~~aj2 > 0.

As usual , it is convenient to solve this standard regulator problem by setting

(3.11) P10(t) = K(t)X 10(t)

where the (n - 1) x (n - 1) matrix K satisfies the Riccati differential

equation

(3.12) K + ~ + A ’K +  ~~= KSK , K (T) = 0.

Standard arguments (cf .,e.g. , Athans and Falb) guarantee the existence of a

unique symmetric solution K > 0 for all t < T. Thus , X10 satisfies the

initial value problem

(3 13) X10 
= (A - SK)X10, x 10(t 1~ = x1 (t~

wh i le 

- 
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(3.14) X20 
= -q~~(q~2 + a~2K)X10, X20(t1 ) x2(t~).

The initial values x 1 (-t~) and x2(t~) must be determined by integrating the

saturated control problem (3.5) on [0,t1] and determining the switching time

t1 by solving the nonlinear scalar equation

(3.15) x2(t~) = -q~~(q~2 + a~2K(t1 ))x( t~).

For certain simple problems (like our preceding examp les), t1 can be explicitl y

- i determined . In general , however , one must attempt to solve (3.15) for its least

positive root t1 numerically.

To check that our solution candidate remain s saturated on 0 < t < t1, we
integrate the linear system

= -A~1p1 
- a12p2 

- Q11 x 1 
- 912x2, p1 (t~

) = P 10(4) = K(t1 )x 1 (t~)

(3.16)

p2 
= -a~~p1 

- a22p2 
- qj2x1 

- q22x2, p2(t~) = 0

backw ards from t1, insisting that p2 / 0 on 0 < t < t1 (the nonhomogeneous

terms are known,since x1 and x2 follow from (3.5)). Likewise , we must be

sure that p2 remains unsaturated for t > t1, i.e.,

(3.17) 1P 201 = Ia~1X~0 + a22X20 
- x

?O t m

for t1 < t < T .

~~ Our procedure then shows us how to produce candidates for the optimal

solu tion of Case 1 problems. Examples can surely be found (cf. next section)

where the troublesom e possib ilities mentioned above eliminat e some potential

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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may still be of va lue. Occasionally, we can be sure that a computed solution

is optimal . An example , on an infinite time interval , is

~ 
x2 + u , x1 (0) = 0

X
2 

-u , x2(O) 
= -0.5, ~ul 

< 1

= ~J x ~dt with x 1(T) = x2(T) = 0 for T free

(c f. Johnson and Gibson (1963)). We should note how effective our method is in

selecting the singular arc solution and that it relates to the popular technique

of synthesizing a control by integrating backwards from terminal time.

Algorithm

We have used the above asymptotic analysis to construct the followi ng algo-

rithm to find numerical solutions of Case 1 problems .

1. Solve the Riccati differential equation (3.12) backwards from t = T

to t = 0. [We used Gear ’s code (1971) for all of our numerical inte-

grations; however , any other good code would have sufficed.]

2. Decide which way the control bound will initially saturate and select

an initial guess for the swi tching time t1.

3. Integrate equations (3.5) from t = 0 to the latest guess for the switching

time . We repeat this step until equation (3.15) is satisfied to a suf—

t ficient degree of accura cy. We generate successive guesses for t1
using a Newton-like procedure due to Brown (1969). If a negative root

is found , it can be eliminated by deflation so that a second iteration

can be attempted . Al so , if the iteration is diverging the sign of the

control bound can be reversed and the procedure repeated.
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4. Once the switching time has been found , we integrate equations

(3.16) backwards from t1 to determine the costate vector in the

saturated region [O ,t 1]. We then integrate equation (3.13) forward

from t1 and use (3.14), (3.11), and the second of (3.9) to determine

the solution in the unsaturated region. During the integration , we

check that the appropriate bounds on p2 are not exceeded .

5. Finally, calculate the cost by integrating (1.2) using the trapezoidal

rule.

4. TWO MORE DIFFICULT PROBLEMS

a. Sirisena (1970) considered the Case 1 problem

x1 x2, x1 (O) = 2

(4.1) X
2 

= U~ x2(0) = 0

2 
22J [ ( x 1 + x ) + € u ]dt, ~uI 

< 1
0

for € = 0. If we, instead , determine the asymptotic solution as E ÷ 0 as in

Section 3, we determine the switching time

t1 
= - 1 1.236 (for T >> t1)

where the control changes from u = -1 to the singular arc . Specificall y, the

limiting control is

—(t-t1 )u =  t1e for t1 < t < T

and the corresponding limiting cost is

J

~~~~~~~~~~~~~~~~~~~~~~~~~
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This control would seem to compare favorably to Sirisena ’s bang-bang solution

for the fixed endpoint problem with x(T) = 0, achieved with an infinite

• number of switchings with f irst switching point 1.227 and cost 0.993455. If

we take our constraint seriously, however , we must rule out this control since

u(t~) = — 1 exceeds the bound u = 1 , (see Figure 3).

Our nearly good solution suggests that we might instead seek a solution

where the control switches from u = -l on some interval 0 < t < t1 to

u = 1 on t1 < t < t2 after which u follows a singular arc . An unsaturated

control must be constructed to smoothly swi tch from — 1 to 1 near t1 (i.e.,

from p2 
= €2 to _€ 2). This type of interior (or transition) layer differs

somewhat from our earl ier boundary l ayers because the desired limits occur for

finite negative and positive values , -n and r
~÷
, of the appropriate stretched

var iable r~ 
= (t — t1 )/€

2, no t f o r  n +~~. Moreover , the l i m iti ng solut ion is

unrelated to a singular arc . For these reasons , the local behavior is determined

by a regular perturbation procedure on (-ri ,n+
) ,  although the solution will

still exhibit singular perturbation features (i.e., nonuniform convergence)

because the t interval corresponding to (-n ,n~.) vanishes as € -.- 0. As

before, the boundary l ayer at t2 is studied by a singular perturbation analysis

which allows the control to switch from its constraint set to a singular arc.

For (4.1), the canonical equations are

x1 = x 2, x2 = u

(4.2)

p1 
= -x1 - x2, P2 

= -x 1 
- x2 

- p1.

On 0 < t < t~, then , the solution is

- - - -

~
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(x 1,x2,u ) (2  -

For -€2r~ < t - t1 < E2n÷, we have u = -p2/~
2 and p2(t1~~

2r~) = ÷ €2,
p2(t 1) 

= 0. Moreover , we ’d locally obtain x1, x2, p1. and p2 as power

series in € with x1, x2, and p1 having nearly the constant values

x1 (t~), x2(t~), and p2(t ~). Since the limiting value of p2 jumps sym-

metrically from -n to ~~~~~~ we have n _ = = ((x 1 (t~) + x2(t~) + p1(t~)~)~~,

provided the denominator is nonzero . Proceding to t~ < t < t2, we mus t have

the limiting solution

(x 1,x 2,u) = (x1 (t~ ) + x2(t~)(t - 
4) 

+ (t - 4)
2/2, x2(t~) + t - 4,1)

and p2(t~) 
= €2 = p2(4). For t > t2, we ’ll have u - p 2/€

2 and (4.2) implies

that the limiting solution (x10,X20,P10,E
2p
20) must satisfy the limiting

singular arc problem . -

1;- lo = X20. X10(t2) = x 1 (t~)

= 

~~2O’ 
X20(t2) = x2(t~)

PlO = -X lO 
- X20~ P10 ( T )  0

- 

. O = - x 1O - x 20 - p lO.

Thus , X20=—X 10 
- P10, P20 -X~0 

= -X 1o~ and there remains the two point

prob l em X 10 >~o — ~lO~ ~lO 
= P10~ X10(t2) x 1(t~), P10(T) = 0. Hence ,

we follow the s i ngular arc
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-(t-t2)X10 ( t) = x 1 (t~) e

(4.3)

~ 
p
1O~~ 

= 0, X20 
= P20 

= -X 10

for t > t2. In order for the control to remain unsaturated there , we must have

lx 1(t~)I < 1.

Lastly, we obtain p
1 

and p2 for t t2 by integrating the costate equations

of (4~.2) backwards with the limiting boundary values p1 (t~) 
= 0, p2(t~) = 0.

Since x1 and x2 are defined differently for 0 < t < t1 and t1 < t < t2,

we also have different expressions for p1 and p2 on these intervals. Our

solution is now completely determined up to specification of the switching times

t1 and t2, 0 < ‘~l 
<

The switching times follow from the two scalar equations

+x2(t 2) = x2(t2)

(4.4) and

p2(t1 ) = 0

which reduce to

+ (1 - t1)~t + (2 - t1 
- 

~-4) = o -

~~~ r4

+ -~.(3 
— 2t1 ) ( ~t)

2 
+ ~-(3 - 2t1 

- ~-t~)1~t + (2 - t1 — ~-t~) = 0

for positive t~t = t2 
- t1. Solving these equations simultaneously we obtain

t1 
= 1.227 and t2 

= 1.564 and a resulting cost 0.993455. We further check
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that p2 has no root other than t1 on 0 < t < t2 and that p2(t~)J

= Ix 1(t~) ! < 1. We note that these results (shown in Figure 4) are in

agreement wi th those of Sirisena (1970), who needed an infinite number of

swi tchings . Presumably, an analogous procedure could be used for other Case 1

problems requiring a finite number of switchings.

b. Jacobson et al. (1970) considered the Case 2 problem

x1 
= x2, x1 (0) = 0

(4.5) = x2(O) = 1

r5

J( € ) -
~-J (x~ + €2u2)dt, Ju~ 

< 1
0

with € = 0. Since the simpl est Case 1 solutions involve a control which

switches from being saturated to lying on a singular arc , we might attempt to cind

Case 2 solutions which switch once between the two control bounds and then follow

the singular arc. (For this problem , it wi ll be impossible to find a control

which switches directly from its bound to the singular arc.) Noting that the

unconstrained problem has a large negative initial control as € ÷ 0 (cf.

O’Malley and Jameson (1976)), we seek a solution such that u = -1 for 0 < t

< t1, u = 1 for t1 < t < t2, and u = -p2/E
2 for t near t1 and for

t2 < t < 5. On (t2,5), the limiting solution 
~~~~~~~~~~~~~ w i ll

satisfy the limiting canonical system

(4.6) X 10 x 20’ 0 = 

~ 2o’ ~io = -x 10’ and p 20 — 

~ 1o’

i.e., it will follow the trivial second order singular arc . Integrating the

state equations (4.5),  we obtain
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(x 1,x2) 
= (t - ~-t~,1 - t) for 0 < t t1

and

(x1,x2) (x 1 (4) + x 2 (4)(t~t1) + ~(t-t1)
2, x2(4) + (t-t 1)) for t1 t < t2.

As for the preceding problem the transition layer at t1 and the boundary layer

at t2 will allow discontinuities in u , but not in the states x1 and x2.

Thus we must have x.(t~) = x.(4) and x~(t~) = x 10(4) = 0, i 1 , 2.

These conditions imply that

(4.7) t1 
= 1 + and t2 

= 1 +

The resulting solution (see Figure 5) compares very favorably to that of Jacobson

et al ; the cost being 0.269 compared to their value 0.277.

Regrettably, however , the control just computed is suboptimal . It does rema in

unsaturated on (t2,5), but the costate vector must satisfy the limiting terminal

value p ro b lem

p1 = -x1, p1 (t~) 
= 0

(4.8)

p2 
= p 1’ p

2
(t~ ) = 0

for t < t2. Since x1 > 0 w ithin (O ,t2), p1 and p2 are also positive

there, so we can ’t achieve the optimality condition p2(t1) 
= 0. (Our algorithm

yields p2 (4) = 0.0104). This closure problem occurs because our switching

requirements completely determine the state, costate , and swi tching times . The ‘

additional optirnal ity condition is an extra constraint without a corresponding

degree of freedom . 

~~~~~~~~~~~ -~~~~~~~~~~~~ - - - - - - , -  -~~~~~ - - . ------
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It should be realized that the optimal control for this problem presuma bly

involves an infini te number of swi tchings which accumulate at a point after

which the control follows a singular arc (cf. Fuller (1963), Grensted and

Fuller (1965), and Marcha l (1973)), although fewer switchings may be possible

for special initial values. Our suboptimal results seem very good , however.

They relate to Sirisena ’s concept of an optimal r—switch solution (cf. Sirisena

(1970)).

A related Case 2 example with a trivial singular arc requiring an infinite

number of swi tchings is

X
1 

= x 2, x1 (0) = 2

= u , x2(O) 
= -2

~J = -~- J x~dt . l u l < 1

(cf. Marchal (1973)). When we try to calculate a one switch solution starting

at u = -1 , we get t1 = 2, ~t = t2 
- t1 = 0, and cost 1.6. The optimal

solution has u 1 unti l t = 0.057 , switches to u = -~1 until about t = 2.6,

and then has an infinite number of sw i t ch ings  accumulat ing at t = 3,43 after

which u = 0. The optimal cost is 1 .52. Our suboptimal solution is presumably

not as good as for the preceding problem where we were able to switch once before

meeting the singular arc.

5. COMMENTS ON HIGHER ORDER SINGULAR ARCS

Experts (cf. e.g., Krener (1976)) feel that infinite switching is generic

for problems with singular arcs of order p, p > 2, although finite switching

may be possible for special initial conditions. Our preceding discussion supports
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this opinion. For such problems , we can readily identify the appropriate form of

singular arc solution through our singular perturbat ion analysi s , and can

generally find a suboptimal p - 1 switch solution converging to the singular

arc. Suboptima l solutions wi th more switchings (a la Sirisena) mi ght also be

sought.

Specifically, for Case 2, we have

b ’Qb 0 and b ’A ’QAb > 0.

The problem can be transformed so that

0 A 11 a
12 0 Q 11 q~~ 0

(5 .1) b = 0 , A = a~1 a22 1 , and Q q~2 q22 0

1 a~1 a32 a33 0 0 0

where A 11 and are matrices of dimension (n - 2) x (n - 2) and q22 is a

positive scalar (cf. O’Malley and Jameson (1976)). Introducing corresponding

state and costate vectors

xl 
‘p

1

x =  x2 and p p 2 .

x3 p3

the scalar optimal control either lies on its bound l u l = m or else u = —p3/€
2.

On the singular arc , the control should be unsaturated and the canonical

system has the form
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x1 A 11 x1 + a12x2

x2 
= a~1x 1 + a22x2 +

~2 = ~ (a31 x1 + a32x2 + a33x3) 
- p3

(5.2) p
~ 

= -Q 11x 1 
- q12x2 

- A ’ 11 p 1 
- a21p2 

-

-

~~~

x
1 

- q~2x2 
- a~ 2p1 

- a22 p2 -

= ~~2 
- a33p3

Seeking a singular arc solution of the form

(5.3) (x1,x2,x3,p1,p 2,p3) = (X 1,X2,x3,P1,E
2P2,E

2P3)

where the X i
’s and P

~
’s have asymptotic series expansions in V~, the leading

terms wil l  satisfy

= + a12X20

= a~ 1 X10 + a 22 X 20 + X30

= a~1X 10 + a32 X20 + a33X30 - P30

P10 -Q11X10 - q12X20 
- A~1 P10

O -q~2X 10 
- q22X20 

- a~2P10

~ 3O = ~2O 
- a33P30

so we must have 

-~~~~~~~~~~~~~~ - ----- ~~~~~~~~~~ -~~~~~~
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= -q 22
q~2X 10 

-

= - a~1 X 10 
- a22X20

(5.4) P30 
= a~1 X10 + a32X20 + a33X30 

-

and

P20 = -a33P30 
- P30

and there remains the linear 2(n - 2) —dimensional problem

-

~~ 

= (A 11 
- a12q~~q~2)X 10 - a12q~~a~2P10

(5.5)

= - q
12q~~q~2 )X 10 

- (A~1 -

analo gous to (3.10). Since Q > 0 and q22 > 0 imply that - q12q~~q~2 > 0,

standard results imply that the two point problem with X 10 (~ ) prescribed and

P10 (T)  = 0 will have a unique solution on any interval [~ ,T]. Thus , the

singular arc solution with control u -P30 can be easily computed on any

such interval provided the state x1(
’
~~) is known from the initial trajectory

[O ,~) with bang -ban g control . In particular , Case 2 problems converge to

the trivial singular arc solution when n = 2. The Case 2 problem

X~~, X
2 

= X
3~ X 3 

= u , x1 (O) = 1 , x2(O) 0, x3(0) 
= 0

J = ~~~(x1 ~ x2)
2dt , ~~ < 1

w itl , for ~~ample , have a nontrivial singular arc (cf. Sirisena (1970)).

We car analogously determine the singular arcs appropriate for Case p

pr-ublems , p > 2. For example , we find the trivial singular arc for the Case

3 problem
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X
2~ X

2 
= X

3~ 
X
3 

= u , 
~
/
l (0) = 1 , x2(O) = 0, x3(O) 

= 0

3 = -
~~~~ x~dt , u i < 1
JO

(cf. Grensted and Fuller (1965) and Sirisena (1974)). The optimal solution

swi tches infinitely often before landing on the singular arc and has an optimum

cost 1.2521 . Our simplest suboptir nal solution switches at t1 .794 and

3t1 and reaches the singular arc at 4t1 
with a cost of 1.2665.
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